原序列为
    
     
      
       a 
        a
      
      
       
        
        
        
         a
        
       
      
     
    
    ,答案序列为
    
     
      
       p 
        p
      
      
       
        
        
        
         p
        
       
      
     
    
    。
   
    令
    
     
      
       f 
[
i
]
[
j
]
        f[i][j]
      
      
       
        
        
        
         f
        
        
         [
        
        
         i
        
        
         ]
        
        
         [
        
        
         j
        
        
         ]
        
       
      
     
    
    表示构造了结果序列的前
    
     
      
       i 
        i
      
      
       
        
        
        
         i
        
       
      
     
    
    位,
    
     
      
       p 
[
i
]
=
a
[
j
]
        p[i] = a[j]
      
      
       
        
        
        
         p
        
        
         [
        
        
         i
        
        
         ]
        
        
        
        
         =
        
        
        
       
       
        
        
        
         a
        
        
         [
        
        
         j
        
        
         ]
        
       
      
     
    
    的方案数。
   
    
     
      
       [ 
L
[
i
]
,
R
[
i
]
]
        [L[i], R[i]]
      
      
       
        
        
        
         [
        
        
         L
        
        
         [
        
        
         i
        
        
         ]
        
        
         ,
        
        
        
        
         R
        
        
         [
        
        
         i
        
        
         ]
        
        
         ]
        
       
      
     
    
    是满足
    
     
      
       L 
[
i
]
≤
i
≤
R
[
i
]
,
∀
j
∈
[
L
[
i
]
,
R
[
i
]
]
,
a
[
j
]
≥
a
[
i
]
        L[i] \leq i \leq R[i], \forall j \in [L[i], R[i]], a[j] \geq a[i]
      
      
       
        
        
        
         L
        
        
         [
        
        
         i
        
        
         ]
        
        
        
        
         ≤
        
        
        
       
       
        
        
        
         i
        
        
        
        
         ≤
        
        
        
       
       
        
        
        
         R
        
        
         [
        
        
         i
        
        
         ]
        
        
         ,
        
        
        
        
         ∀
        
        
         j
        
        
        
        
         ∈
        
        
        
       
       
        
        
        
         [
        
        
         L
        
        
         [
        
        
         i
        
        
         ]
        
        
         ,
        
        
        
        
         R
        
        
         [
        
        
         i
        
        
         ]
        
        
         ]
        
        
         ,
        
        
        
        
         a
        
        
         [
        
        
         j
        
        
         ]
        
        
        
        
         ≥
        
        
        
       
       
        
        
        
         a
        
        
         [
        
        
         i
        
        
         ]
        
       
      
     
    
    的最大区间。
   
    
     
      
       f 
[
i
]
[
j
]
=
[
L
[
j
]
≤
i
≤
R
[
j
]
]
∗
∑
f
[
i
−
1
]
[
k
]
(
k
≤
j
)
        f[i][j] = [L[j] \leq i \leq R[j]] * \sum f[i – 1][k] (k \leq j)
      
      
       
        
        
        
         f
        
        
         [
        
        
         i
        
        
         ]
        
        
         [
        
        
         j
        
        
         ]
        
        
        
        
         =
        
        
        
       
       
        
        
        
         [
        
        
         L
        
        
         [
        
        
         j
        
        
         ]
        
        
        
        
         ≤
        
        
        
       
       
        
        
        
         i
        
        
        
        
         ≤
        
        
        
       
       
        
        
        
         R
        
        
         [
        
        
         j
        
        
         ]
        
        
         ]
        
        
        
        
         ∗
        
        
        
       
       
        
        
        
         ∑
        
        
        
        
         f
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
        
         [
        
        
         k
        
        
         ]
        
        
         (
        
        
         k
        
        
        
        
         ≤
        
        
        
       
       
        
        
        
         j
        
        
         )
        
       
      
     
    
   
状态转移分析:
    
     subtask 1
    
   
    首先解释
    
     
      
       k 
≤
j
        k \leq j
      
      
       
        
        
        
         k
        
        
        
        
         ≤
        
        
        
       
       
        
        
        
         j
        
       
      
     
    
   
    为什么
    
     
      
       k 
>
j
        k > j
      
      
       
        
        
        
         k
        
        
        
        
         >
        
        
        
       
       
        
        
        
         j
        
       
      
     
    
    没有贡献呢?
   
- 
 condition 1
 
 
 
 
 k> j ≥ i − 1 k > j \geq i – 1 
 
 
 
 
 
 
 k
 
 
 
 
 >
 
 
 
 
 
 
 
 
 j
 
 
 
 
 ≥
 
 
 
 
 
 
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 
 
 如果 
 
 
 
 k≥ j k \geq j 
 
 
 
 
 
 
 k
 
 
 
 
 ≥
 
 
 
 
 
 
 
 
 j
 
 
 
 
 
 , 并且
 
 
 
 a[ k ] a[k] 
 
 
 
 
 
 
 a
 
 
 [
 
 
 k
 
 
 ]
 
 
 
 
 
 将
 
 
 
 p[ i − 1 ] p[i – 1] 
 
 
 
 
 
 
 p
 
 
 [
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 ]
 
 
 
 
 
 修改了,那么说明
 
 
 
 ∀j ∈ [ i − 1 , k ] , p [ j ] ← a [ k ] \forall j \in [i – 1, k], p[j] \leftarrow a[k] 
 
 
 
 
 
 
 ∀
 
 
 j
 
 
 
 
 ∈
 
 
 
 
 
 
 
 
 [
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 ,
 
 
 
 
 k
 
 
 ]
 
 
 ,
 
 
 
 
 p
 
 
 [
 
 
 j
 
 
 ]
 
 
 
 
 ←
 
 
 
 
 
 
 
 
 a
 
 
 [
 
 
 k
 
 
 ]
 
 
 
 
 
 ,那么操作了
 
 
 
 a[ k ] a[k] 
 
 
 
 
 
 
 a
 
 
 [
 
 
 k
 
 
 ]
 
 
 
 
 
 后
 
 
 
 p[ j ] p[j] 
 
 
 
 
 
 
 p
 
 
 [
 
 
 j
 
 
 ]
 
 
 
 
 
 肯定是
 
 
 
 a[ k ] a[k] 
 
 
 
 
 
 
 a
 
 
 [
 
 
 k
 
 
 ]
 
 
 
 
 
 ,这时候再考虑
 
 
 
 p[ i ] ← a [ j ] p[i] \leftarrow a[j] 
 
 
 
 
 
 
 p
 
 
 [
 
 
 i
 
 
 ]
 
 
 
 
 ←
 
 
 
 
 
 
 
 
 a
 
 
 [
 
 
 j
 
 
 ]
 
 
 
 
 
 就不对了。
- 
 condition 2
 
 
 
 
 k≥ i − 1 > j k \geq i – 1 > j 
 
 
 
 
 
 
 k
 
 
 
 
 ≥
 
 
 
 
 
 
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 
 
 >
 
 
 
 
 
 
 
 
 j
 
 
 
 
 这种情况下,如果 
 
 
 
 p[ i − 1 ] ← a [ k ] p[i – 1] \leftarrow a[k] 
 
 
 
 
 
 
 p
 
 
 [
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 ]
 
 
 
 
 ←
 
 
 
 
 
 
 
 
 a
 
 
 [
 
 
 k
 
 
 ]
 
 
 
 
 
 ,
 
 
 
 p[ i ] ← a [ j ] p[i] \leftarrow a[j] 
 
 
 
 
 
 
 p
 
 
 [
 
 
 i
 
 
 ]
 
 
 
 
 ←
 
 
 
 
 
 
 
 
 a
 
 
 [
 
 
 j
 
 
 ]
 
 
 
 
 
 ,那么修改后的序列和
 
 
 
 dp [ i − 1 ] [ j ] dp[i – 1][j] 
 
 
 
 
 
 
 d
 
 
 p
 
 
 [
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 ]
 
 
 [
 
 
 j
 
 
 ]
 
 
 
 
 
 所提供的序列重复了,所以只算
 
 
 
 dp [ i − 1 ] [ j ] dp[i – 1][j] 
 
 
 
 
 
 
 d
 
 
 p
 
 
 [
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 ]
 
 
 [
 
 
 j
 
 
 ]
 
 
 
 
 
 就好了。
- 
 condition 3
 
 
 
 
 i− 1 > k > j i – 1 > k > j 
 
 
 
 
 
 
 i
 
 
 
 
 −
 
 
 
 
 
 
 
 
 1
 
 
 
 
 >
 
 
 
 
 
 
 
 
 k
 
 
 
 
 >
 
 
 
 
 
 
 
 
 j
 
 
 
 
 
 
 和
 
 condition 2
 
 一个道理。
    
     subtask 2
    
   
再来解释一下方程
这个转移是怎么一个过程呢:
    
     
      
       ∑ 
f
[
i
−
1
]
[
k
]
,
k
≤
j
        \sum f[i – 1][k], k \leq j
      
      
       
        
        
        
         ∑
        
        
        
        
         f
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
        
         [
        
        
         k
        
        
         ]
        
        
         ,
        
        
        
        
         k
        
        
        
        
         ≤
        
        
        
       
       
        
        
        
         j
        
       
      
     
    
    相当于我们用各种方法把
    
     
      
       [ 
1
,
i
−
1
]
        [1, i – 1]
      
      
       
        
        
        
         [
        
        
         1
        
        
         ,
        
        
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
       
      
     
    
    搞成各不相同的样子,然后我们再
    
     
      
       p 
[
i
]
←
a
[
j
]
        p[i] \leftarrow a[j]
      
      
       
        
        
        
         p
        
        
         [
        
        
         i
        
        
         ]
        
        
        
        
         ←
        
        
        
       
       
        
        
        
         a
        
        
         [
        
        
         j
        
        
         ]
        
       
      
     
    
    。
   
再来证明一下正确性
不重:
    由于状态定义:首先
    
     
      
       d 
p
[
i
−
1
]
[
j
]
,
d
p
[
i
−
1
]
[
k
]
(
j
≠
k
)
        dp[i – 1][j],dp[i – 1][k] (j \neq k)
      
      
       
        
        
        
         d
        
        
         p
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
        
         [
        
        
         j
        
        
         ]
        
        
         ,
        
        
        
        
         d
        
        
         p
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
        
         [
        
        
         k
        
        
         ]
        
        
         (
        
        
         j
        
        
        
        
         
          
           
            
             
              
               
               
               
                
                
                
                 
                  
                 
                
                
                
               
              
             
             
              
             
            
            
             
              
              
             
            
           
          
         
         
          =
         
        
        
        
       
       
        
        
        
         k
        
        
         )
        
       
      
     
    
    中包含的答案状态一定不同(因为
    
     
      
       p 
j
[
i
−
1
]
=
a
[
j
]
,
p
k
[
i
−
1
]
=
a
[
k
]
        p_j[i – 1] = a[j], p_k[i – 1] = a[k]
      
      
       
        
        
        
         
          p
         
         
          
           
            
             
              
              
              
               
                j
               
              
             
            
            
             
            
           
           
            
             
             
            
           
          
         
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
        
        
        
         =
        
        
        
       
       
        
        
        
         a
        
        
         [
        
        
         j
        
        
         ]
        
        
         ,
        
        
        
        
         
          p
         
         
          
           
            
             
              
              
              
               
                k
               
              
             
            
            
             
            
           
           
            
             
             
            
           
          
         
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
        
        
        
         =
        
        
        
       
       
        
        
        
         a
        
        
         [
        
        
         k
        
        
         ]
        
       
      
     
    
    );又由于状态定义,
    
     
      
       d 
p
[
i
−
1
]
[
j
]
        dp[i – 1][j]
      
      
       
        
        
        
         d
        
        
         p
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
        
         [
        
        
         j
        
        
         ]
        
       
      
     
    
    内部的答案状态也一定不同。
   
不漏:
    如果当前
    
     
      
       p 
[
i
]
=
a
[
j
]
        p[i] = a[j]
      
      
       
        
        
        
         p
        
        
         [
        
        
         i
        
        
         ]
        
        
        
        
         =
        
        
        
       
       
        
        
        
         a
        
        
         [
        
        
         j
        
        
         ]
        
       
      
     
    
    , 那么
    
     
      
       p 
[
i
−
1
]
        p[i – 1]
      
      
       
        
        
        
         p
        
        
         [
        
        
         i
        
        
        
        
         −
        
        
        
       
       
        
        
        
         1
        
        
         ]
        
       
      
     
    
    的值无非就只有
    
     
      
       a 
[
1
        a[1
      
      
       
        
        
        
         a
        
        
         [
        
        
         1
        
       
      
     
    
    ~
    
     
      
       j 
]
        j]
      
      
       
        
        
        
         j
        
        
         ]
        
       
      
     
    
    。其余情况根据
    
     subtask 1
    
    ,他们一定不满足要求。
   
参考代码:
#include <map>
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define fi first
#define se second
#define db double
#define LL long long
#define PII pair <int, int>
#define MP(x,y) make_pair (x, y)
#define rep(i,j,k) for (int i = (j); i <= (k); i++)
#define per(i,j,k) for (int i = (j); i >= (k); i--)
template <typename T> T Max (T x, T y) { return x > y ? x : y; }
template <typename T> T Min (T x, T y) { return x < y ? x : y; }
template <typename T> T Abs (T x) { return x > 0 ? x : -x; }
template <typename T>
bool read (T &x) {
	x = 0; T f = 1;
	char ch = getchar ();
	while (ch < '0' || ch > '9') {
		if (ch == '-') f = -1;
		ch = getchar ();
	}
	while (ch >= '0' && ch <= '9') {
		x = (x << 3) + (x << 1) + ch - '0';
		ch = getchar ();
	}
	x *= f;
	return 1;
}
template <typename T>
void write (T x) {
	if (x < 0) {
		putchar ('-');
		x = -x;
	}
	if (x < 10) {
		putchar (x + '0');
		return;
	}
	write (x / 10);
	putchar (x % 10 + '0');
}
template <typename T>
void print (T x, char ch) {
	write (x); putchar (ch);
}
const int Maxn = 5 * 1e3;
const LL Mod = 1e9 + 7;
int n;
int a[Maxn + 5], l[Maxn + 5], r[Maxn + 5];
LL dp[2][Maxn + 5], pre[Maxn + 5];
#define add(x,y) ((x += y) >= Mod && (x -= Mod))
signed main () {
	// freopen ("C:\\Users\\Administrator\\Desktop\\vscode\\1.in", "r", stdin);
	// freopen ("C:\\Users\\Administrator\\Desktop\\vscode\\1.out", "w", stdout);
	// freopen ("C.in", "r", stdin);
	// freopen ("C.out", "w", stdout);
    read (n);
    for (int i = 1; i <= n; i++)
        read (a[i]);
    
    a[0] = -1; a[n + 1] = -1;
    rep (i, 1, n) {
        per (j, i, 0)
            if (a[j] < a[i])
                { l[i] = j + 1; break; }
        rep (j, i, n + 1)
            if (a[j] < a[i])
                { r[i] = j - 1; break; }
    }
    rep (j, 1, n) {
        if (l[j] <= 1 && 1 <= r[j])
            dp[1][j] = 1;
        else
            dp[1][j] = 0;
    }
    bool f = 0;
    rep (i, 2, n) {
        memset (pre, 0, sizeof pre);
        rep (j, 1, n) {
            pre[j] = pre[j - 1];
            add (pre[j], dp[f ^ 1][j]);
        }
        rep (j, 1, n) {
            if (l[j] <= i && i <= r[j])
                dp[f][j] = pre[j];
            else
                dp[f][j] = 0;
        }
        // rep (j, 1, n) {
        //     printf ("dp[%d][%d] = %lld\n", i, j, dp[f][j]);
        // }
        f ^= 1;
    }
    LL res = 0;
    rep (i, 1, n)
        add (res, dp[n & 1][i]);
    write (res);
	return 0;
}
 
