前言
之前开发系统的时候客户提到了一个需求:需要统计某些页面的访问量,记得当时还纠结了一阵子,不知道怎么去实现这个功能,后来还是在大佬的带领下借助 Redis 实现了这个功能。今天又回想起了这件事,正好和大家分享一下 Spring Boot 整合 Redis 实现访问量统计的全过程。
首先先解释一下为什么需要借助 Redis,其实原因也很简单,就是因为它非常快(每秒可执行大约81000次的 SET 操作,每秒大约可执行110000次的 GET 操作),我们就可以把访问量暂存在 Redis 中,当有人访问页面的时候,就直接在 Redis 中执行 +1 的操作,然后再每隔一段时间把 Redis 中的访问量的数值写入到数据库中就搞定了~
肯定有小伙伴会想:如果我们不借助 Redis 而是直接操作数据库的话会怎么样呢?
访问量的统计是需要频繁读写的,如果不用 Redis 做缓存而是直接操作数据库的话,就会对数据库带来巨大的压力,试想一下如果此时有成千上万个人同时访问页面的话,数据库很可能在这一瞬间造成数据库的崩溃。对于这种高读写的场景,就需要直接在 Redis 上读写,等到合适的时间,再将数据批量写到数据库中。所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力。
Spring Boot 整合 Redis
引入依赖、增加配置
首先还是需要引入 Redis 依赖
<!-- 集成Redis -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
接下来就在配置文件中增加 Redis 的相关配置
# spring配置
spring:
# redis配置
redis:
host: 127.0.0.1
port: 6379
database: 0
jedis:
pool:
max-active: 200
max-idle: 500
min-idle: 8
max-wait: 10000
timeout: 5000
P.S. 如果 Redis 设置了密码,别忘了增加 password 配置哦 ~
b 上代码
首先在 Utils 包内新增一个 RedisUtil
package com.media.common.utils;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
import javax.annotation.Resource;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
/**
* @program: media
* @description: RedisUtil
* @author: 庄霸.liziye
* @create: 2021-12-15 10:02
**/
@Component
public final class RedisUtil {
@Resource
private RedisTemplate<String, Object> redisTemplate;
// =============================common============================
/**
* 指定缓存失效时间
* @param key 键
* @param time 时间(秒)
*/
public boolean expire(String key, long time) {
try {
if (time > 0) {
redisTemplate.expire(key, time, TimeUnit.SECONDS);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据key 获取过期时间
* @param key 键 不能为null
* @return 时间(秒) 返回0代表为永久有效
*/
public long getExpire(String key) {
return redisTemplate.getExpire(key, TimeUnit.SECONDS);
}
/**
* 判断key是否存在
* @param key 键
* @return true 存在 false不存在
*/
public boolean hasKey(String key) {
try {
return redisTemplate.hasKey(key);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除缓存
* @param key 可以传一个值 或多个
*/
@SuppressWarnings("unchecked")
public void del(String... key) {
if (key != null && key.length > 0) {
if (key.length == 1) {
redisTemplate.delete(key[0]);
} else {
redisTemplate.delete(CollectionUtils.arrayToList(key));
}
}
}
// ============================String=============================
/**
* 普通缓存获取
* @param key 键
* @return 值
*/
public Object get(String key) {
return key == null ? null : redisTemplate.opsForValue().get(key);
}
/**
* 普通缓存放入
* @param key 键
* @param value 值
* @return true成功 false失败
*/
public boolean set(String key, Object value) {
try {
redisTemplate.opsForValue().set(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 普通缓存放入并设置时间
* @param key 键
* @param value 值
* @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期
* @return true成功 false 失败
*/
public boolean set(String key, Object value, long time) {
try {
if (time > 0) {
redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
} else {
set(key, value);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 递增
* @param key 键
* @param delta 要增加几(大于0)
*/
public long incr(String key, long delta) {
if (delta < 0) {
throw new RuntimeException("递增因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, delta);
}
/**
* 递减
* @param key 键
* @param delta 要减少几(小于0)
*/
public long decr(String key, long delta) {
if (delta < 0) {
throw new RuntimeException("递减因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, -delta);
}
// ================================Map=================================
/**
* HashGet
* @param key 键 不能为null
* @param item 项 不能为null
*/
public Object hget(String key, String item) {
return redisTemplate.opsForHash().get(key, item);
}
/**
* 获取hashKey对应的所有键值
* @param key 键
* @return 对应的多个键值
*/
public Map<Object, Object> hmget(String key) {
return redisTemplate.opsForHash().entries(key);
}
/**
* HashSet
* @param key 键
* @param map 对应多个键值
*/
public boolean hmset(String key, Map<String, Object> map) {
try {
redisTemplate.opsForHash().putAll(key, map);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* HashSet 并设置时间
* @param key 键
* @param map 对应多个键值
* @param time 时间(秒)
* @return true成功 false失败
*/
public boolean hmset(String key, Map<String, Object> map, long time) {
try {
redisTemplate.opsForHash().putAll(key, map);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
*
* @param key 键
* @param item 项
* @param value 值
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value) {
try {
redisTemplate.opsForHash().put(key, item, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
*
* @param key 键
* @param item 项
* @param value 值
* @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value, long time) {
try {
redisTemplate.opsForHash().put(key, item, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除hash表中的值
*
* @param key 键 不能为null
* @param item 项 可以使多个 不能为null
*/
public void hdel(String key, Object... item) {
redisTemplate.opsForHash().delete(key, item);
}
/**
* 判断hash表中是否有该项的值
*
* @param key 键 不能为null
* @param item 项 不能为null
* @return true 存在 false不存在
*/
public boolean hHasKey(String key, String item) {
return redisTemplate.opsForHash().hasKey(key, item);
}
/**
* hash递增 如果不存在,就会创建一个 并把新增后的值返回
*
* @param key 键
* @param item 项
* @param by 要增加几(大于0)
*/
public double hincr(String key, String item, double by) {
return redisTemplate.opsForHash().increment(key, item, by);
}
/**
* hash递减
*
* @param key 键
* @param item 项
* @param by 要减少记(小于0)
*/
public double hdecr(String key, String item, double by) {
return redisTemplate.opsForHash().increment(key, item, -by);
}
// ============================set=============================
/**
* 根据key获取Set中的所有值
* @param key 键
*/
public Set<Object> sGet(String key) {
try {
return redisTemplate.opsForSet().members(key);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 根据value从一个set中查询,是否存在
*
* @param key 键
* @param value 值
* @return true 存在 false不存在
*/
public boolean sHasKey(String key, Object value) {
try {
return redisTemplate.opsForSet().isMember(key, value);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将数据放入set缓存
*
* @param key 键
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSet(String key, Object... values) {
try {
return redisTemplate.opsForSet().add(key, values);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 将set数据放入缓存
*
* @param key 键
* @param time 时间(秒)
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSetAndTime(String key, long time, Object... values) {
try {
Long count = redisTemplate.opsForSet().add(key, values);
if (time > 0) {
expire(key, time);
}
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 获取set缓存的长度
*
* @param key 键
*/
public long sGetSetSize(String key) {
try {
return redisTemplate.opsForSet().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 移除值为value的
*
* @param key 键
* @param values 值 可以是多个
* @return 移除的个数
*/
public long setRemove(String key, Object... values) {
try {
Long count = redisTemplate.opsForSet().remove(key, values);
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
// ===============================list=================================
/**
* 获取list缓存的内容
*
* @param key 键
* @param start 开始
* @param end 结束 0 到 -1代表所有值
*/
public List<Object> lGet(String key, long start, long end) {
try {
return redisTemplate.opsForList().range(key, start, end);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 获取list缓存的长度
*
* @param key 键
*/
public long lGetListSize(String key) {
try {
return redisTemplate.opsForList().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 通过索引 获取list中的值
*
* @param key 键
* @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
*/
public Object lGetIndex(String key, long index) {
try {
return redisTemplate.opsForList().index(key, index);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
*/
public boolean lSet(String key, Object value) {
try {
redisTemplate.opsForList().rightPush(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
* @param key 键
* @param value 值
* @param time 时间(秒)
*/
public boolean lSet(String key, Object value, long time) {
try {
redisTemplate.opsForList().rightPush(key, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @return
*/
public boolean lSet(String key, List<Object> value) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, List<Object> value, long time) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据索引修改list中的某条数据
*
* @param key 键
* @param index 索引
* @param value 值
* @return
*/
public boolean lUpdateIndex(String key, long index, Object value) {
try {
redisTemplate.opsForList().set(key, index, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 移除N个值为value
*
* @param key 键
* @param count 移除多少个
* @param value 值
* @return 移除的个数
*/
public long lRemove(String key, long count, Object value) {
try {
Long remove = redisTemplate.opsForList().remove(key, count, value);
return remove;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
}
然后再新增一个 RedisConfig 类
package com.media.common.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
import org.springframework.boot.autoconfigure.data.redis.RedisProperties;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.data.redis.core.RedisOperations;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericToStringSerializer;
/**
* @program: media
* @description: RedisConfiguration
* @author: 庄霸.liziye
* @create: 2021-12-15 10:16
**/
@Configuration
@ConditionalOnClass(RedisOperations.class)
@EnableConfigurationProperties(RedisProperties.class)
public class RedisConfig {
/**
* 设置 redisTemplate 的序列化设置
* @param redisConnectionFactory
* @return
*/
@Bean
public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
// 1.创建 redisTemplate 模版
RedisTemplate<Object, Object> template = new RedisTemplate<>();
// 2.关联 redisConnectionFactory
template.setConnectionFactory(redisConnectionFactory);
// 3.创建 序列化类
GenericToStringSerializer genericToStringSerializer = new GenericToStringSerializer(Object.class);
// 6.序列化类,对象映射设置
// 7.设置 value 的转化格式和 key 的转化格式
template.setValueSerializer(genericToStringSerializer);
template.setKeySerializer(new StringRedisSerializer());
template.afterPropertiesSet();
return template;
}
}
有些眼尖的小伙伴会发现在 RedisUtil 工具类中,我们在 private RedisTemplate<String, Object> redisTemplate 上增加的是 @Resource 注解,并非是 @Autowire 注解。
原因也很简单,在源码中我们可以看到 RedisTemplate 指定的是泛型,如果在注入 RedisTemplate 时,值的部分使用了 Object ,那么再使用@AutoWired 注解注入就会报空指针的错误,所以需要使用 @Resource 注解(二者的区别是前者是根据类型注入后者是根据名字注入,具体的这里就不详细说,有兴趣的小伙伴可自行百度查阅😄)
Redis 的相关代码到这里就写完了, 接下来我们就以“记录A页面的访问量”为需求,写一个简单的业务逻辑,代码仅供参考哦 ~
首先我们新建一个数据库表,表结构很简单,只有三个字段,分别是ID、访问量、统计时间
我们再写一下操作这个表的 CRUD 方法(这个也很简单,相信各位小伙伴都可以脑补出来 (●’◡’●) 所以在这里就不写具体代码了)
此处略去一万个字…😄
下面我们写一个监听类:
package com.media.picture.handler;
import com.media.common.utils.DateUtils;
import com.media.common.utils.RedisUtil;
import com.media.picture.domain.MamPictureView;
import com.media.picture.service.IMamPictureViewService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.Ordered;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
/**
* @program: media
* @description: ListenHandler
* @author: 庄霸.liziye
* @create: 2021-12-15 10:54
**/
@Component
@Order(Ordered.HIGHEST_PRECEDENCE)
public class ListenHandler {
@Autowired
private RedisUtil redisUtil;
@Autowired
private IMamPictureViewService iMamPictureViewService;
public ListenHandler(){
System.out.println("开始初始化");
}
@PostConstruct
public void init() {
System.out.println("Redis及数据库开始初始化");
//插入一条空数据
MamPictureView mamPictureView = new MamPictureView();
mamPictureView.setViewNum(Long.valueOf(0));
int viewId = iMamPictureViewService.insertMamPictureView(mamPictureView);
redisUtil.set("pageA_id", viewId);
redisUtil.set("pageA_count", 0);
System.out.println("Redis及数据库初始化完毕");
}
}
监听器的作用就是当项目启动后,在数据库表中插入一条空记录,并且在 Redis 中存入这条空记录的 id,并且将其访问量初始化为0。
最后我们再写一下跳转A页面的方法:
@Autowired
private RedisUtil redisUtil;
@GetMapping("/toPageA")
public String toPageA()
{
redisUtil.incr("pageA_count",1);
System.out.println("访问量:"+redisUtil.get("pageA_count"));
return "/pageA";
}
这时候代码就全部搞定了,我们启动一下项目,看看执行效果👇
我们每点跳转一次页面,Redis 中的访问量就会执行+1操作,实现了访问量的记录,最后一步就是把 Redis 中记录的访问量写入数据库就大功告成啦~
我这里选择的是使用定时任务的方式写入,每间隔一段时间写入一次(为了能看到明显的效果,就写成了每间隔40秒执行一次)👇
@Scheduled(cron = "*/40 * * * * ?")
public void viewCount2DB(){
System.out.println("准备从redis写入mysql");
MamPictureView mamPictureView = new MamPictureView();
mamPictureView.setViewId(Long.valueOf((String) redisUtil.get("pageA_id")));
mamPictureView.setViewNum(Long.valueOf((String) redisUtil.get("pageA_count")));
iMamPictureViewService.updateMamPictureView(mamPictureView);
System.out.println("写入完毕");
}
P.S. 写入数据库的过程就很简单了,而且有很多办法可以实现写入的操作,这里的定时任务只作为参考哦~ o(
 ̄▽ ̄
)ブ