主成分分析(Principal Component Analysis,PCA), 将多个变量通过线性变换以选出较少个数重要变量的一种多
元统计分析方法.
——————————————–目录——————————————————–
理论和数据见附录
Spark 源码(mllib包)
实验
———————————————————————————————————-
Spark 源码(mllib包)
/** * A feature transformer that projects vectors to a low-dimensional space using PCA. * * @param k number of principal components */ @Since("1.4.0") class PCA @Since("1.4.0") (@Since("1.4.0") val k: Int) { require(k > 0, s"Number of principal components must be positive but got ${k}") /** * Computes a [[PCAModel]] that contains the principal components of the input vectors. * * @param sources source vectors
版权声明:本文为legotime原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。