CIFAR-10和CIFAR-100数据集说明

  • Post author:
  • Post category:其他



翻译自:


http://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10和CIFAR-100是带有标签的数据集,它们是8000万个微小图像数据集的子集,他们由Alex Krizhevsky,Vinod Nair和Geoffrey Hinton收集。



CIFAR-10数据集

CIFAR-10数据集由10个类的60000个32×32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。

数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但一些训练批次可能包含来自一个类别的图像比另一个更多。总体来说,所有训练批组成的训练集,每一类都有5000张图。

以下是数据集中的类,以及来自每个类的10个随机图像:

在这里插入图片描述

这些类完全相互排斥。汽车和卡车之间没有重叠。“汽车”包括轿车,SUV,这类东西。“卡车”只包括大卡车。都不包括皮卡车。



CIFAR-10下载

共有三个版本

CIFAR-10 python版本  (http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz)
CIFAR-10 Matlab版本  (http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz
CIFAR-10二进制版本(适用于C程序)(http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz)


Baseline results (基线结果?还不是很懂)

你可以在cuda-convert的项目页面上找到此数据集上的一些基线可复制的结果。这个结果是由CNN卷积神经网络得到的。简要的说,在没有数据扩充的情况下,测试误差为18%,反之为11%。

(emmm这段感觉关系不大。。。)



数据集布局

Python/Matlab 版本

该数据集文件包含data_batch1……data_batch5,和test_batch。他们都是由cPickle库产生的序列化后的对象(关于pickle,移步https://docs.python.org/3/library/pickle.html)。这里给出python2和python3的例程,他可以打开这样的pkl文件,返回一个字典结构的数据:

python2:

def unpickle(file):
    import cPickle
    with open(file, 'rb') as fo:
        dict = cPickle.load(fo)
    return dict

python3:

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict

在这里插入图片描述

这样的话,每个batch文件包含一个字典,每个字典包含有:

  • Data

    一个10000

    3072的numpy数组(numpy:

    https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

    ) , 数据类型是无符号整形uint8。这个数组的每一行存储了32

    32大小的彩色图像(32

    32

    3通道=3072)。前1024个数是red通道,然后分别是green,blue。另外,图像是以行的顺序存储的,也就是说前32个数就是这幅图的像素矩阵的第一行。

  • labels

    一个范围在0-9的含有10000个数的列表(一维的数组)。第i个数就是第i个图像的类标。

数据集除了6个batch之外,还有一个文件batches.meta。它包含一个python字典对象,内容(entries)有:

  • label_names

    一个包含10个元素的列表,每一个描述了labels array中每个数字对应类标的名字。比如:label_names[0] == “airplane”, label_names[1] == “automobile”

二进制版本

该版本包含5个训练批data_batch_1.bin, data_batch_2.bin, …, data_batch_5.bin,1个测试批test_batch.bin。他们的格式都是:

<1 x label><3072 x pixel>
...
<1 x label><3072 x pixel> 

换句话说,第一个字节是第一个图像的标签,它是一个0-9范围内的数字。接下来的3072个字节是图像像素的值。前1024个字节是红色通道值,下1024个绿色,最后1024个蓝色。值以行优先顺序存储,因此前32个字节是图像第一行的红色通道值。

每个文件都包含10000个这样的3073字节的“行”图像,但没有任何分隔行的限制。因此每个文件应该完全是30730000字节长。

还有另一个文件,称为batches.meta.txt。这是一个ASCII文件,它将0-9范围内的数字标签映射到有意义的类名称。它仅仅是10个类名的列表,每行一个。第i行的类名称对应于数字标签i。

在这里插入图片描述



CIFAR-100数据集

这个数据集就像CIFAR-10,除了它有100个类,每个类包含600个图像。,每类各有500个训练图像和100个测试图像。CIFAR-100中的100个类被分成20个超类。每个图像都带有一个“精细”标签(它所属的类)和一个“粗糙”标签(它所属的超类)

以下是CIFAR-100中的类别列表:

超类 类别
水生哺乳动物 海狸,海豚,水獭,海豹,鲸鱼
水族馆的鱼,比目鱼,射线,鲨鱼,鳟鱼
花卉 兰花,罂粟花,玫瑰,向日葵,郁金香
食品容器 瓶子,碗,罐子,杯子,盘子
水果和蔬菜 苹果,蘑菇,橘子,梨,甜椒
家用电器 时钟,电脑键盘,台灯,电话机,电视机
家用家具 床,椅子,沙发,桌子,衣柜
昆虫 蜜蜂,甲虫,蝴蝶,毛虫,蟑螂
大型食肉动物 熊,豹,狮子,老虎,狼
大型人造户外用品 桥,城堡,房子,路,摩天大楼
大自然的户外场景 云,森林,山,平原,海
大杂食动物和食草动物 骆驼,牛,黑猩猩,大象,袋鼠
中型哺乳动物 狐狸,豪猪,负鼠,浣熊,臭鼬
非昆虫无脊椎动物 螃蟹,龙虾,蜗牛,蜘蛛,蠕虫
宝贝,男孩,女孩,男人,女人
爬行动物 鳄鱼,恐龙,蜥蜴,蛇,乌龟
小型哺乳动物 仓鼠,老鼠,兔子,母老虎,松鼠
树木 枫树,橡树,棕榈,松树,柳树
车辆1 自行车,公共汽车,摩托车,皮卡车,火车
车辆2 割草机,火箭,有轨电车,坦克,拖拉机

Superclass Classes
aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor


CIFAR-100下载
CIFAR-100 python版本 
CIFAR-100 Matlab版本 
CIFAR-100二进制版本(适用于C程序)


数据集布局

Python/matlab版本

python和Matlab版本的布局与CIFAR-10相同.

二进制版本

CIFAR-100的二进制版本与CIFAR-10的二进制版本相似,只是每个图像都有两个标签字节(粗略和细小)和3072像素字节,所以二进制文件如下所示:

<1 x粗标签> <1 x精标签> <3072 x像素>
...
<1 x粗标签> <1 x精标签> <3072 x像素>



版权声明:本文为qq_36653505原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。